描述

111. 二叉树的最小深度 - 力扣(Leetcode)

分析

  • 二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数或者节点数(取决于深度从0开始还是从1开始)
  • 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数后者节点数(取决于高度从0开始还是从1开始)

根节点的高度就是二叉树的最大深度嘛

实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import java.util.LinkedList;
import java.util.Queue;

//111. 二叉树的最小深度
public class MinimumDepthOfBinaryTree111 {
public static void main(String[] args){
TreeNode root = MyUtils.buildTree(new Integer[]{3,9,20,null,null,15,7});
System.out.println("这棵树的最小深度为" + new Solution().minDepth(root));
}

}
class Solution {

//递归
public int minDepth1(TreeNode root) {
//结束点
if (root == null) {
return 0;
}
int leftDepth = minDepth(root.left);
int rightDepth = minDepth(root.right);
if (root.left == null) {
return rightDepth + 1;
}
if (root.right == null) {
return leftDepth + 1;
}
return Math.min(leftDepth, rightDepth) + 1;
}

//层序遍历
public int minDepth(TreeNode root) {
//结束点
if (root == null) {
return 0;
}
int depth = 0, size = 0;
Queue<TreeNode> que = new LinkedList<>();
que.offer(root);
while(!que.isEmpty()){
size = que.size();
depth++;
TreeNode temp;
for (int i = 0; i < size; i++) {
temp = que.poll();
if (temp.left == null && temp.right == null) return depth;
if (temp.left != null) que.offer(temp.left);
if (temp.right != null) que.offer(temp.right);
}
}
return depth;
}

}


class TreeNode {
int val;
TreeNode left;
TreeNode right;

public TreeNode(){};
public TreeNode(int val){this.val = val;}
public TreeNode(int val, TreeNode left, TreeNode right){
this.val = val;
this.left = left;
this.right = right;
}
}



class MyUtils {
/**
*二叉树的构建
* int[] -> 二叉树
*/
public static TreeNode buildTree(Integer[] arr) {
return buildTreeHelper(arr, 0);
}

public static TreeNode buildTreeHelper(Integer[] arr, Integer index) {
if (index >= arr.length || arr[index] == null) {
return null;
}

TreeNode node = new TreeNode(arr[index]);

node.left = buildTreeHelper(arr, 2 * index + 1);
node.right = buildTreeHelper(arr, 2 * index + 2);

return node;
}

/**
* 层序遍历
*/
public static void levelOrderTraversal(TreeNode root) {
if (root == null) {
return;
}

Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);

while (!queue.isEmpty()) {
TreeNode node = queue.poll();
System.out.print(node.val + " ");

if (node.left != null) {
queue.add(node.left);
}

if (node.right != null) {
queue.add(node.right);
}
}
}
}

总结